
"TR- 76-0886

i

00

AN ACCESS CONTROL FACILITY FOR

PROGRAMMING LANGUAGES

Anita K. Jones
Carnegie-Mellon University

Barbara H. Liskov
Massachusetts Institute of Technology

May 1976

.

,

DEPARTMENT
of

COMPUTER SCIENCE
O?

D D C
üSPnnGE

ftUC J> 1976

B

iii
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)

rOTICE OF TRANSMimL TO DDC
7 L<„«i ^. ■ hafi beea reviewed and is

st3r.- :^: -r'.i^io^ 190-13 (Ybi. rovea -»-or puuj.*«
Distribution is ualimited.

A, 1>. BLOSS
lochuical infomatioa Officer

"~blSfRf8fjfTON SfÄfEMENT A

Approved for public iwlwnws
Düitribiition UoiiiMiwd

.-

■ I

Carnegie ^Mellon University

■■-.,-.-. ■.■ :..■.:

■

.

AN ACCESS CONTROL FACILITY FOR

PROGRAMMING LANGUAGES

Anita K. Jones
Computer Science Department
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

Barbara H Liskov
Department of Electrical Engineering

and Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

May 1976

jSSSKW taf

;;-'.S '■i;':

WJ'. 3< Ij 1

I
This research was supported by the National Science Foundation under grants DCR74-21892 and
DCR74-04187.

BEST
AVAILABLE COPY

ABSTRACT

Controlled sharing of information is needed and desirable for many applications. Access control

mechanisms exist In operating systems to provide such controlled sharing. However, programming

languages currently do not support such a facility. This paper argues that to enhance software

reliability programming languages should support controlled sharing of Information; the paper

Illustrates L>w such an access control facility could be incorporated in a programming language.

The mechanism described Is suitable for incorporation In object-oriented languages which permit

the definition of abstract data types; it is defined In such a way as to enable compile time checking

of access control.

Keywords and PhmM: access control, data types, type checking, capabilities.

CR Categories: 4.20. 4.35

-2

1. INTRODUCTION
One of the most important attributes of a programming language is the way the scope rul« of

the language define how data is to be shared among the individual program units (procedures,

block», modules) out of which program is construaed Ordinarily, access to data is provided on

an aiJ-or-nothlng basis; if a module can access some data base at all, then every component of the

data base may be accessed, and every possible type of access (usually Just reading and writing) may

be performed Experience in building large applications, or applications involving sensitive data,

has Indicated that sharing of data is greatly enhanced if finer control than all-or-nothing access is

provided. For example, manipulation of the information in a data base is much more controlled if

not every program which reads the data base Is also permitted to write it In addition. If some of

the Information In a data base Is sensitive, then control over which programs can read which

information is also desired.

Current programming languages are deficient in providing mechanisms for controlling the

sharing of Information among program units. For example, passing a data base "by value" ensures

that the called procedure may not modify the data base. However, this mechanism does not

provide control over what parts of a data base may be read; in addition, it is so eApenslve for large

data bases that other parameter passing mechanisms are used instead. Proposals for avoiding the

overhead of call by value while retaining the benefit that the data base cannot be modified (for

example, call by reference, but permitting only read access to the formal parameter) solve the

efficiency problem, but still do not provide for selective reading of the data base. In addition, such

proposals do not provide for the control of selective alteration of the data base.

The thesis of this paper is that programming languages should provide mechanisms for

controlled sharing of data. We define a syntax and semantics for such a mechanism. The

mechanism we will show borrows heavily from work in operating systems, where access control

mechanisms have long been one of the tools useful for realizing controlled sharing of data. In

particular, our mechanism is modeled after the capability protection mechanisms provided by some

operating systems [Sturgis74, Wulf741

-3

To incorporate an access control mechanism in a programming language, we will choose an

approach that permits programmers to express access control restrictions in terms that are

meaningful to their application domains We assume that all data are contained in objects for

which there exists a set of accesses Objects are those entities, such as data bases, libraries, stacks or

files, which are of interest to programmers Accesses are limited to those that are meaningful

manipulations of the objects; accesses are the only means for altering an object or extracting

information from it. In some cases, meaningful accesses are the familiar read, write, and. possibly,

execute access In other cases, the accesses themselves are user-defined, tailored to the abstract

notion the user Intends to capture For example, a file system may distinguish between write access

and append access. In contrast to a write access, an append access is assumed to modify the file,

but not to alter existing content. This permits a user to share a file with others, allowing them to

augment the file by appending to it, but not allowing them the ability to rewrite any portion of It»

What is to be gained by incorporating access control into a programming language? We

believe several benefits will accrue. The crucial benefit is enhanced software reliability in that

programs can be written to be well-behaved with respect to the constraints governing sharing of

data. We will call such programs access-correct An access-correct program obeys the following

constraints:

1. It may access only those objects which it has a legitimate right to access

2. It may perform only meaningful accesses to these objects.

3. If it Is restricted to performing some proper subset of the meaningful accesses to an
object, eins restriction cannot be circumvented.

Access control restrictions are stated in a declarative fashion analogous to type declaration« for

variables. They may be viewed similarly as a statement of user intent. >hich may be relied on by

someone reading the program to obtain a better understanding of (he ^.rpose of the program

In addition access control can be introduced into languages in such a way that the

access-correctness of a program can be checked at compile-time. This will lead to benefits similar

to those derived from compile-time type checking (Indeed, the mechanism we provide Is a logical

i

extension of type checking); the assurance that a compiled program is access-correct, and (possibly)

enhanced efficiency over the dynamic mechanisms currently provided by operating systems Note

that compile time checking of access control is beneficial even if dynamic mechanisms are retained:

access control errors are caught early, and a programmer may be confident that his program will

not fail due to an access-control violation.

The last benefit we wish to point out is that a programmer will be able to express fully In the

language how he Intends to make use of the protection facilities of an operating system. At

present, the access control information is expressed separately from the program in some sort of

Job-control language; such a separation increases the difficulty of writing programs for such

systems. In addition, the language permits more precise specification of access requirements on a

program by program basis, not on a user job or Job step basis

In the next section, we describe the kind of programming language we have chosen as a basis

for Incorporation of an access control mechanism, and define how access control is achieved for

simple, unstructured data objects. Section 3 extends the access control mechanism to data structures.

In Section 4 we compare our mechanism with the dynamic mechanism in the Hydra operating

system [Wulf74, Jones75], this is especially interesting since our mechanism is modeled after

capability protection mechanisms like that provided in Hydra. We conclude in Section 5 with a

discussion of what we have accomplished.

5

2. THE BASIC MODEL

In this section, we describe the kind of programming language that we have selected as a basis

for Incorporation of access control, and then define a notation and set of rules sufficient for

controlling access to simple, unstructured objects Since our purpose Is to Illustrate how access

control might be Incorporated into a programming language, rather than to define a complete

programming language, we Introduce only a minimum of syntax and semantics to express the

access control rules. Our semantic model is chosen to have the following characteristics.

1. It Is consistent with defining access control in terms meaningful to user applications.

2. Sharing of data objects is natural and straightforward

3. It is possible to determine at compile time whether a program obeys the access control
rules, and Is thus access-correct. In addition, the decision about whether a program Is
access-correct can be made based on only local information, similar to the way that
type-checking In a strongly typed language Is performed.1

We can develop some intuition about the character of a language into which access control can

be Integrated by considering how operating systems provide access control: The data-containing

objects to be controlled are uniquely distinguishable (each object has a unique identity). All direct

manipulation of an object is via accesses to It. The accesses to an object must be distinguishable so

that unauthorized accesses can be prevented. For each object there Is a set of potentially allowed

accesses; no other accesses can be performed on that object. The potentially allowed accesses

depend on what kind of object is being accessed, and users require the ability to define new kinds

of objects suitable to their particular application domains.

Thus, to discuss access control we require a language that permits the writing of programs in

terms of data objects and the accesses that are meaningful for them. In particular, languages in

which a datum Is viewed as an aggregate of memory cells are not suitable, because of the difficulty

of expressing access control on anything but a cell basis. One class of languages, including the

1. The question of how static checking interacts with programming power is addressed in
Section 4.

6-

language. S.mula67 [Dahl72]. CLU [U*ov%] and Alphard [Wulf76]. prov.des a natural

environment in which to embed an access control facility. We will call such languages

pbject-orlented languages

The suitability of object-oriented languages for embedding access control arises primarily from

the view of data types taken in these languages A data type is cons.dered to be more than simply

a set of objects or values A type also spec.fies a set of operations which provides the mean, for

manipulating the objects The operations provide for creating objects of the type, for obtaining

information about objects of the type, and for altering objects of the type The operations of a

type correspond very closely (though not identically, as we shall show) to our notion of access, and

access control corresponds to the ability to control the use of the operations

The user of objects of some type is constrained to view those objects abstractly in terms of the

type'» operations rather than in terms of the objects' representation In order to def me a new type,

a storage representation must be specified for the type's objects; however, this representation can be

manipulated only by the type's operations. Limiting knowledge of the storage representation to Just

the operations ensures that those ope.ations completely determine the behav.or of the type's objects

[Lt$kov76].

In order to accomr odate access control, we will add one more component to a type: In

addition to objects and operations, a type also specifies a set of rights A right is a name that

represents a meaningful manipulation of objects of the type, often a right corresponds to the use of

one of the type', operation,. The basic idea behind rights is: to legally apply one of the type',

operation,, a u,er must hold appropriate rights to the objects passed to that operation a,

parameter,.

An example i, given in Figure I for tH type. a,,ociative-memory. Operation, for thi, type

include an operation to create an empty a„ociative-memory of a particular lite (makemem). an

operation to add a name-value pair to an a„nciative-memory (in,ert). an operation to change the

value a.,oclated with a given name (change), an operation to fetch the value a,,oc|ated with a

7-

given name (getval), and an operation to remove a name-value pair (delete) In order for Insert.

change, getval, or delete to be Invoked, the Invoker must present a right to apply the operation to

the associative-memory parameter, in this particular example, the name of the required right Is the

same as the name of the operation The makemem operation returns all these rights for the

associative memory object it creates The associative-memory operations also use objects of type

Integer For simplicity we have chosen to let a single right ("use") control the use of all Integer

operations In general, we can expect some rights to correspond to the use of a single operation,

some to a group of operations (type integer provides a degenerate example of this case), and Some

to a single parameter of an operation taking more than one object of the type.

type: associative-memory
rights. "Insert", "change", "getval". "delete"
rperations:

makemem
input:
returns;

insert
input:

effect:
change

Input:

effect:
getval

Input:

returns:
delete

Input:

effect:

Integer; "use" right comment desired associative-memory size
associative-memory. "Insert'V'changeVgetval". "delete" rights are given

associative-memory; "Insert" right
Integer; "use" right comment the name
Integer; "use" right comment the value
(insert modifies Its associative-memory parameter)

associative-memory; "change" light
integer; "use" right connnent the name
Integer, "use" right comment the new value
(change modifies Its associative memory parameter)

associative-memory; "getval" right
Integer; "use" right comment the name
Integer; "use" right comment the value

associative-memory; "delete" right
integer; "use" right comment the name
(delete modifies its associative-memory parameter)

Figure 1. The Assooiative-memory Type.

Types such as associative-memory can be Implemented by means of a special kind of program

that defines what the rights and operations are and provides Implementations for all of the type'i

-8-

operations. We will refer to such a program as a type-module 2

Notation and Rules for Aooess Control

Our notation for access control involves a declaration for each variable of the type of object

that variable may "iference, and the rights that are available for that object when it is accessed via

the variable. These two pieces of information are captured in the notion of a qualified type. A

qualified type is written

T{rl rn)

where T is the name of some type, and {rl... ,rn} is a non-empty subset of the rights of T. We refer

to the two parts of a qualified type as the base type and the rights; if Q, Is a qualified type, then

base<Q} Is the base type and rlghts(Q; is the rights. For example, the following are some of the

qualified types derived from associative-memory

associative-memory {gaval}
associative-memory (insert, change}
associative-memory {insert, change, getval, delete)

The final example specifies all the associative-memory rights; a special notation

T{all}

may be used instead of listing all the rights.

Qualified types are used in variable declarations and in formal parameter specification» In

procedure headings. An example of a variable declaration is:

v: associative-memory (insert, change)

The meaning of this declaration 1$: v Is a variable which can be used to reference

associative-memory objects, but only the "insert" and "change" rights may be exercised In

conjunction with v.

We view a variable as a pair

2. Type-modules will be discussed later in this section. Type-modules are similar to classes In
Simula, clusters In CLU and forms in Alphard.

-9-

{cbject id, qualified type)

The Ob,«. ,d is . umqu- n.n. wh.ch „ ,n„rp,.lri b, *. und.rlymg .ddr.Siing n^MnUm to

«1«, an obj.« The ,yp. of .hl. obFc. 1. guaran^d (b, ,be acce» coo.rol rules) to be .he base

,ype or .he quaUüeä .ype o, .he v,.,ab,e. Wheo a ,a.,3b,e ,. cea.ed, U. ,uaU.,ed .ype .. def.ned

„„„ and for all and can never be allered However, .he objec. nanred by a var.able (v.. ,he objec.

,d) can change by apphcauon of .he b.nd.ng opera.ron d.scussed below No.e .ha, 1. 1. poss.bl. for

sharing of ob,«» .o .ake place, because .wo var.ables ma, con.a.n .he same objec, Id In .h.. case.

,h. qual.fled .ype In .he .wo variables may differ, bu. .he base .ype I, necessanly .he same,

A variable Is a capab.l,,, In .he operarlng sys.em sense IDenn,s66, LampsonU Jones73l The

capabduy provides .he bas.s for res.rrc.lng .he kinds of man.pulanon .ha, can be performed on

,he objec, spec,f,ed by ,he ob,ec. Id, imuUlvely, ,he resn.clons on how an ob,ec, can be used are

„pressed along ,he pa,h ,o ,he ob^c, (.he pa,h ,hrough ,he objec. Id In ,he variable) Thus,

us, .g one pa,h ralher rhan ano,h.r ,o name an objec, changes ,h. way .he objec, can be

manipulated For example, suppose

a: associative-memory{getval, insert)
b: associative-memuiyfgetval)

bo,h name ,he same objec Using b 1, 1. .mposs.ble ,o nrodlfy ,h,s objec,, since only ,he g«..1

op.r.,lon can be used, us.ng a, ,he objec, may be modified by appllcallon of ,he Inser, opera,lon.

The nollons of variables, ob^crs and b.ndlng are dlfferen, from ,he related no,,on, of v.lu.

and «slgnmem which underlie block-slrucured languages This difference 1, tlluslrated In Ffgure

2. Figure 2. show, the traditional view of variable, and value,, In which the value re.lde. In the

variable and a new value can be copied ln,o a variable b, means of assignment Figure 2b

niu,,ra,e, our „mantle: a variable 1, bound to an object, and a value I, contained In an objec,,

Thl. V..U. may only be acce,,ed or modified by mean, of one of ,he opera.lon, of ,he objec,.

„p. Our rule of binding dlffar, from «slgnmen. In ,ha. It c.u,e, sharing of ,h. object invoWed.

rather than the copying of the value In ,he object Furthermore, thl, sharing I, „gnlflcan. ..nee

f., «n. type. of objects, operation, exl,, to change ,he value ln,lde of the obj«. For examp^.

10

the associative-memory operations Insert, change and delete modify the value Inside of an

associative-memory object.

variable

value

Figure 2a. Traditional view of variables and values.

variable

Figure 2b. Model used in this paper.

Figure 2. Comparison of Semantic Models.

Our notion of binding corresponds to assignment involving variables holding (typed)

references to objects. Some programming languages are based on a semantic model like curs. The

most widely known of these languages is LISP [McCarthy62]; LISP lists are objects (with

operations car. cdr and cons) and LISP setq Is the same as our binding. Our model is also used in

SIMULA 67. CLU and Alphard.

We claim that our semantics models very well what is going on in systems where controlled

sharing is of interest. Note that sharing of objects is a fundamental fact in these systems; the

sharing of actual objects (rather than just copies of the values of objects) leads both to interesting

behavior (e.g., many programs working with the same data base), and the need to exercise some

control over exactly how :ht object should be shared. Protection schemes exist tc provide this

control.

.

-II

Binding Rule

A single rule, governing the legality o.' binding of objects to variables, is sufficient to provide

the required access control and is the basis for determmmg whether a program is access-correct

(satisfies the sharing constraint» discussed in Section I) Binding is the operation that causes a

variable to reference an object (by changing the object id) The effect of binding is creation of a

new access path for the object. Therefore, in order to ensure that a program is access-correct, we

must guarantee that no new rights to access the object are obtained from this new access path. For

example, suppose that x and y are variables, and that x Is to be bound to the object currently

bound to y. This new binding should be allowed only if the qualified types of x and y both arise

from the same base type, and If the rights obtainable by accessing the ooject via variable x do not

exceed ihe rights obtainable by accessing the object via y.

We can formalize this rule as follows. First, we define what it means for one qualified type to

be greater than or equal to another. If Q) and Q2 are qualified types, then Ql is greater thap or

equal to Q2. written

QUO?
If ba$e(Q|) - base(Q2) and rlghts(Q)) o right$(Q2) Now the rule of binding can be defined:

v ♦■e

where v is a variable and »Is an expression and

Tv - qualified type of variable v
Te - qualified type of expression e

Is legal provided that

Te>Tv

Thus a binding 1$ legal only if the new access path provides at most a subset of the rights

obta.nable via the original access path. Note that this rule ensures that a variable will always

reference an object whose type is the base type of the qualified type of the variable

Art expression Is either a variable. In which case Its qualified type is the same as the qualified

type of the variable, or It Is a procedure Invocation. In the former case, we have now defined the

12

rule of binding (since Te is the qualified t-^e of this variable). For example, suppose

a. assocative-memoryjgetval, insert}
b: associative m nory[getvalj

Then b*- a Is legal, but a*= b is not This 's illustrated in Figure 3. In Figure 3a, an Initial

configuration is shown in which a references an associative-memory object a, and b references an

associative-memory object ß Figure 3b shows the result of b<- a. Both b and a now reference a.

A new access path (from b to o) has been created as a result of this binding, but no new right» to

a arc obtained by it; In fact, the new access path via b has fewer rights to a than the old access

path. Figure 3b Illustrates what would be the result of a ♦-b. If this binding were allowed, the

new access path from a to 3 would allow more rights than the old one, and therefore the binding

must not be permitted.

In order to understand binding when the righthand side is a procedure invocation, we must

examine the semantics of parameter passing Our notion of parameter passing is defined in terms

of olnding. A procedure definition has the form

procedure <prücname> («formals specification;»)
returns <result speciflcation> -
<body>
end <procnarne>

where <formals specification> specifies the name and qualified type for each formal parameter,

and <result $peclfication> specifies the qualified type returned by the procedure Each formal

parameter is considered to be a local variable of the procedure; this variable is created at

Invocation, and the actual parameter is bound to it. The <body> is then executed, and finally an

object, whose type is the base type of the qualified type in the <result specification^ is returned.

For example, suppose a procedure P has type requirements

procedure P*(x: Tl{fl,f2)) returns T2{gl)

and declarations

associative-memory
{getval, insert} •-■

associative-memory
{getval}

13

Figure 3a. The initial state.

associative-memory
{getval, Insert}

Figure 3b. Result of b «* a.

associative-memory
{getval, Insert}

associative-memory
{getval}

ß

Figure 3c. Result of a ♦- b (disallowed).

Figure 3. Binding.

a: Tl{fl.f2>f4}
b: T2{gl}

occur In the Invoker of P. Then the statement b «■ P(a) is legal. The passing of parameters and

the return value Is effectively simulated as follows: As part of the procedure invocation and before

execution of the procedure body, two locals, x and retval, are Declared

-14

X:Tl(fl,f2}
retval: T21gll

and the object referenced by the actual parameter is bound to x (x «-a) Execution of the body

terminates with execution of a return statement of the form

return e

This can be simulated with bindings

retval ♦■ e
bo retval

The procedure P is access-correc' only If all of iti bmd.ngs are legal; this Includes the binding

retval ♦-e but not x^-a nor b*-retval. For retval «-e to be legal, the qualified type of

expression e must be > that of retval, I.e.. that defined In the return specification. Thus If (In the

body of P)

y: T2{gl.g3}
r T2{g2,g3}

then return y Is legal but return i Is not Note that the access-correctness of P can be dete mined

by local examination of Its definition.

The Invocation of P

b •- P(a)

Is legal because the bindings of x«=a and b*= retval are legal. However, c *«P(a). where

c: T2{gl.g3}. is not legal.

Procedure invocation Is the mechanism whereby objects are created in the first place. There

ej:l$t a number of primitive data types (for example Integer, boolean, array). The create operations

of these types provide objects of the type whenever they are invoked, and these objects are

returned with full rights. For the non-primitive, user-defined types the situation Is analogous.

This has already been Illustrated In the associative-memory example shown in Figure I; whenever

the makemem operation for associative-memory is Invoked, it returns a new associative-memory

object with full rights. Thus the creator of an object obtains all rights to It. As th* object is

passed from one access-correct procedure to another, certain rights may be removed, but rights are

-15

never gained. This i$ true because binding is the only method provided for transmitting access

paths to objects (references to objects) between procedures

Amplifioation and Type-Modules

We have presented a rule for binding that regulates how users of an object can create new

access paths to objects in order to judiciously share them between procedures. Now we focus on the

type-module, the mechanism that is used to implement objects and accesses to objects

Sometimes, in order for a useful function to be accomplished, it is necessary for the called

procedure to obtain more rights to the object than the caller had When this occurs it Is called

amplification [Jones73] In our model, we permit amplification to occur at only one point: at entry

to a procedure implementing an operation defined In the type-module There are always two types

associated with a type-module: the type being defined, which we will call the abstract type, and the

ref esentation type, which is used to represent objects of the abstract type Amplification is the

rmchanism that controls conversion between these types, thus permitting the procedures

Implementing the operations of the type to obtain access to the objects' representations.

A type-module defines the following Information:

1. A list of the rights defined for objects of the type.

2. A list of the operations defined In the module that may be invoked by programs external
to the type-module Note that the operations (defined by procedures) in such a module may
require as parameters objects of types defined elsewhere.

3. A description of the storage representation for objects of the type.

4. Procedures, some of which define the type's operations

In Figure 4, a portion of the type-module for the associative-memory type Is shown. The storage

representation for associative-memories Is a record (similar to a PASCAL record [Wlrth7l])

containing an Integer to tell how large the associative-memory is, an integer to tell how full the

16

associative memory is, and two arrays of integers to hold the names and the values. This Is

declared by

rep- record t size: integer^ till}, full: mtegerjall},
name: array[integer{all}]jall),
value: array[integer(alll]jall|] {all)

which defines the representation type for this type-module, the abstract type is associative-memory

Note that all rights for every component of the representation are available for use within

procedures defined In the type-module (when an object of type associative-memory is passed ai an

actual parameter).

It It the procedures In a type-module that determine the behavior of objects of that abstract

type. To do so these procedures need to manipulate the representation of aburact type objects

received as parameters. Thus procedures in the type-module require the right to convert an object

between Its abstract and Its representation type. For example, the associative-memory Insert

procedure takes an associative-memory object as Its first parameter s. Inside the body of Insert, s is

treated as type record (the associative-memory representation type) and the record components are

accessed.

The makemem procedure creates a variable r of the representation type, and constructs a new

record object which Is bound to r through the statement

r: rep*- recordcreate(slie: n, full. 0, name: arraycreate(l,n). value: arraycreated.n))

The component labelled full of this record object Is Initialized to 0. the component labelled size Is

Initialized to the size desired by the caller, and the components labelled name and value are

Initialized to new array objects having I and n as lower and upper bounds5 Makemem Is defined

S. Data structures are discussed In Section 3.

4. If this mechanism were embedded In an actual programming language, specification of full

rights would probably be elided.

5. We have chosen to make array bounds Information part of array object creation to simplify
th' «'mantles of data structures (see Section 3).

-17-

type-inodule associative-memory -

rights insert, change, getval, delete;

operations makemem, Insert, change, getval, delete;

rep - record [size: integer{all}, full: integerjall),
name; arrayfinteger{all)]{all),
value: arr. v[integer{allj]|all}] {all};

comment we have full rights to Integer, array and record objects;

procedure makemem (n: lnteger{all}) returns assoclative-memoryjall} -

comment parameter n determines size of associative memory;

r: rep «. recordcreate($lze: n. full: 0, name: arraycreate(l,n), value: arraycreate(l.n));
return r;

end makemem;

proc Jure insert (s: associative-memoryjinsert}, n: integerfall}, v; Integerfall}) -

If $ full - s size or in(s, n) < s.full then signal inserterror;
s.full«.s.full ♦!;

s.namets.f ull] ♦- n;

s.valuets.full]«- v;

end insert;

procedure in (s: repfall}, n; integerfall}) returns integerfall} -

coininent in is an internal procedure;
connnent returns index of s.name entry containing n, else returns s.full ♦ I;

for I: integerfall}«- I step I to s.full do
if s.named] - n then return i;

return (s.full ♦ I);

end in;

end associative-memory

Figure 4. Part of th« asaooiative-memory type-module.

-18

to return, not a record, but an associative-memory object; the record object is automatkally

converted to its abstract type associative-memory as part of the return from the makemem

procedure

The Insert procedure can add a name-value pair to the associative memory only if there Is

room, and If there Is no previous entry for this name If these conditions are not satisfied. It

reports an error, using whatever error reporting mechanism exists in the language To determine

whether an entry already exists for this name it calls procedure in. this is an internal procedure of

the type-module, which rs not accessible outside because it Is not listed among the operations.

We have chosen to make conversion between abstract type and representation type be

automatic within a type-module;6 type module procedures can reference abstract objects as if they

were of representation type and vice versa. In either case, "full" rights are available. Full rights to

the abstract type are those defined by the type-module; full rights to the representation type are

those specified in the rep type definition. Note that these conversions are purely changes in the

point of view of the compiler; no code need be executed to accomplish them. Note also that the

conversions apply only to the abstract type being defined by the type-module

Type conversion is limited to the type-module. If an abstract type object could be converted to

its representation outside the type module, any operation of the type could be performed (via

manipulation of the object representation), even if the right to perform that operation were not

present. By limiting this conversion to just the type-module, we guarantee that the access control

restrictions cannot be violated. Conversion from representation to abstract type is also limited to

the type-module, so that counterfeit objects, whose representation might not even agree with the

representation type of the type-module, cannot be formed.

It is worth noting the difference between the rights qualifications appearing in the heading of

6. A discussion of the semantics of these conversions may be found in [Liskov76]

-19

a procedure defining a type's operations and an ordinary procedure In the case of the ordinary

procedure, the rights qualification describes constraints on the procedure itself and also on its caller.

For example, in

procedure P ($: associative-memorylmsert))

P can use only the insert operation on the associative-memory object named by s (either directly or

through some procedure P calls), and the caller of P must have been able to insert values in this

object In the case of an operation-defining procedure, the caller is constrained to provide

appropriate rights for an object of the type, but because of amplification the operation Itself has

no rights constraints.

Remarks

W<; have now described an access mechanism sufficient to control the sharing of many of the

kinds of objects of interest In programming For example, suppose we define a type

employee-record, with operations (and rights) to read-job-category, write-job-category. read-salary,

and write-salary. among others. Using the rules defined so far, we can define a procedure

procedure P (x: employee-record{read-job-category, write-salary))

which computes a new salary based on the employee's job-category, but is unable to change the

Job-category, or to read the old ss lary.

We claimed earlier In this section that If all the bindings In a procedure were legal, then the

procedure was access-correct. We offer the following informal justification for this claim. The

binding rule Is defined so that no new access rights can be obtained through a legal binding.

Therefore, the only way to obtain extra rights Is by passing an object to some other procedure,

which somehow gives out the extra rights. There are two cases to consider here; a call on an

ordinary procedure, and a call on a procedure implementing an operation on the object in question.

No extra rights can be obtained In the former case if the called procedure Is access-correct. In the

latter case, extra rights can be obtained If the type-module is defined to permit this. So ultimately

the access-correctness of a system of programs rests on the type-modules in use: If the type-modules

•re trustworthy, no extra rights can be obtained, but If not, access control can be violated.

-20-

The fact that access control ultimately rests on the correctness of programs led to our

restricting amphf.cation to type-modules This restr.cnon ensures that the programmer knows

exactly where to look to determine whether his programs will work as he des.res If, in addition,

type modules prov.de as few operates as are necessary, then the amount of code to be examined

U also mm.mued. A less stnngent restricts on ampl.f.cauon. for example, to permit procedures

outside the type module to obtain additional abstract rtghts. would make the programmer's task

much more difficult, Clearly, no power is lost by our restr.ct.on, s.nce extra operates may be

added to a type module - at the cost of the add.uonal code to be inspected

We have been careful never to state that rights are identtfied w.th operafon names. In our

examples so far. they have been used in preasely this way We expect this to be usual However,

there are cases where this is not appropriate

I Some operations, most notably create operations like makemem for associative- memories.
take To parameters of the type be.ng def.ned, thus these operation names have no such

corresponding rights

2. Some operations take more than one object of the type being ^"^ ^^
different r.ghts for each object. For example, suppose file rights include merge
-mergeto". and the file merge operation requires the followmg rights

procedure merge (f; file {merge, mergeto). g: file Imerge))

The procedure merges the contents of files f and g; f conta.ns the result of the ^g«'bü» J
runTanged Not! that the procedure merge requires a special right to mergeto Its first

parameter where the results are to be placed.

It seems premature to make fixed rules about the relat.onsh.ps between operat.on names and rights.

Practice will determ.ne what is convenient. However, we expect a subset of the operat.on names

will have corresponding r.ghts. In unusual cases there will exist addit.onal r.ghts different from

operation names. These will occur when operations treat parameters of the type be.ng defined in

different ways.

7. We assume that the right to use a type Implies the ability to create objects of that type. This

assumption is discussed in Section 4.

•

21-

3. SHARING OP STRUCTURED OBJECTS

The access control rules described in the previous section provide control over the sharing of

objects that are passed directly from one procedure to another However, they are inadequate to

control sharing of objects passed indirectly - through the medium of another object For example,

suppose a number of procedures share a data base of employee records. Our rules can be used to

control the sharing of the data base as a whole; It is a simple matter to grant read-only access to the

data base However, there is no way to also control access to the individual employee records stored

in the data base.

In order to discuss this problem further, we must introduce a notation which permits us to talk

about both the structure as a whole (the data base) and the elements of the data base (the employee

record?/ The data type to be described Is "data base of employee records" which is similar to data

typet already existing In programming languages such as "array of integers". The notation we will

use is the following:

<data structure type name>[<element type names>]

Examples are

data-base[employee-record] .
arrayünteger]

Both the data structure type name and the element type name(s) are the names of types, and so all

can be qualified. To specify qualified structured types we will use the notation

T[q! Qn]{rl rm)

where T is the type of the structure (for Instance array, record or data-base) for which rights

rl rm are defined, and QI,....Qn are the qualified types of the n kinds of elements in the structure.

In the following discussion we will limit ourselves to structures containing a single kind of element;

this simplifies the discussion without loss of generality'

8. Limiting what appears between the square brackets to Just types is another simplification. It
Is easy to permit other compile-time-known quantities to appear between the brackets (for example,
the selector names for components of records); an extension to quantities not known until execution
time (for example, array bounds) can also be made, but at the expense of runtime checking.

 _ _. .._ _

22

Suppose that we w1Sh to write a program, P, to scan a data base and calculate for each job

category the average age of employees in that category The program is not permitted to modify

either the data base as a whole, or any of the employee records in the data base In addition, there

are a number of items in the employee records which may not be read, for example, salary

information. Assume the r.6h:s to a data-base include 'read1 and update1, and the rights to

employee-records include biru, date, read-job-category, wnte-job-category. read-salary, and

write-salary. Further assume that all these rights permit the use of operations of the same name.

Then the access control needs of procedure P to the data base can be expressed:

procedure P (d: data-ba^e [employee-record{birth-date, read-job-category} Hread})

Another legitimate data-base type, one which might be used by a caller of P, is

e: data-base[employee-record(blrth-date,r.ad-job-category,read-salary}]{read,update}

We want the invocation P(e) to be legal Intuitively, what we want is a binding rule that permits a

structured object to be bound to a vanable provided that the rights to the structure as a whole, and

to the elements of the structure, do not increase. However, a straightforward extension of our

binding rule, permitting the binding d «-e. Is not possible for reasons explained below.

Just as with unstructured data, a data structure such as array or data-base may be

characterized by a group of operations For example, array operations of interest are arraycreatc

(which creates a new array of a given size), fetch (which fetches the ith element of the array) and

update (which updates the ith element of the array)9 However, a data structure is not a type; rather

It is a set of types, containing a different type for each possible combination of element types of the

structure. Thus, array is the set of types containing among other elements

arraylinteger]
array[string]

The types in this set of types differ from one another only in the kinds of elements the arrays

9. In the associative-memory example shown in the preceding section (Figure 4). we used the

notation all] to stand for the invocation of fetch(a.l). and the notation a[i] ♦■ x to stand for the

invocation of update(a,i,x).

-23-

contain Each type (in the set) is associated with a group of array operations that are specialized to

work for the particular element type by an appropriate selection of types for their input and output

parameters. For example, the parameter and return types of the operations for the type

arrayUnteger] are

procedure arraycreate (lb, ub: integer) returns array[integer]|all}
procedure fetch (a: array[integer][fetch), i; integer) returns integer
procedure update (a: array[integer]lupdate}, i; integer, s: integer)

Clearly it would be an error to attempt to perform an array[integer] operation on an array[strlng]

object or vice versa The operations for the two types differ in their input and output type

requirements. In fact, the information about the element types of a particular data structure type i»

contained in the type requirements of the associated group of operations

The above discussion has not taken into consideration any special requirements introduced by

access control. In fact, all that access control Introduces is a change in the possible element types of

a data structure; in a language with access control, data structure element types may be qualified

Although this may seem like a very small difference, the consequences are profound. It means that

array[T{fl.f2}]

and

array[T{fl}]

are different types and it would be Just as illegal to apply an operation of type array[T{fl}] to an

object of type array[Tjfl,f2}] (or vice versa) as it is to apply an operation of type arraylir.ieger] to

an object of type array[$tring]. Therefore, It is not possible to make the desired binding d *• e

(discussed above) because It would violate type-checking.10

10. The semantics of data structures and the motivation for this restriction will be discussed in a
subsequent paper.

. ..

2i-

Extended Rule of Binding

Our extended rule of b.ndmg provides the des.red access-control behav.or, but avo.ds the

type-check.ng violation described above It permits a procedure to state precisely what limited

rights U requires to all objects. Including data structures and the.r component objects, and the

procedure is restricted to exerc.s.ng only those rights for which it expliutly stated a requirement

However, the extended b.nd.ng rule does not requ.re that the type of a liable be completely

known. It allows the type to be partially spec.f.ed When this occurs, the precise type of a data

structure object referenced by the vanable i, not known by the compiler. Nevertheless, the

comp.ler can ensure that no erroneous assumptions are made about the type of a data structure

object.

What is known about the type of a data structure object is that a conta.ns at least those rights

to elements requ.reo by the program. Cons.der the example of a procedure G wh.ch accepts as a

parameter an array of elements of type T with fl and f2 rights, with full rights to use the array. A

call to G w.ll be legal only If it is passed an object of type

array[R]{all]

where base(R; - T and rights(R) 2 {f|,f2}. Thus R , T{f,,2) We have just expressed exactly

what i, known inside G about the element type of the array. The notat.on actually used ,s

procedure G (a: array[?R > T{fl,f2) }{all})

The r emphasizes that type R l, not completely known when G is comp.led; we w.ll refer to types

like R as ?type$. The notation

> T{fl,f2}

expresses exactly what is assumed about R inside of G.

For simplicity, we limit the introduct.on of Ptypes to formal parameter specification, in

procedure headings. The key to understanding Ptypes is to understand what assumptions are made

about such type, inside a procedure which uses them. The assumptions made are very

straightforward:

25

1. Every use of a particular ?lype mme 1$ assumed to stand for the same real type

2. Although this real type is not known inside the body of the procedure, a set of Posslb,e

candidates for the real type u known; for example, assuming the rights for T are {fl.f2.f3).

then inside of G It is known that

?R « {T{fl.f2). T{fl.f2.f3)}

The binding rule is defined so that no extra rights can be obtained no matter which member

of the set is associated with the ?type In the current invocation

3. Two ?types with different names are not assumed to bt nparable inside the procedure,

even if they are drawn from the same set.

The association of actual type values with ?types is made at procedure Invocatior. The

association must be don« 'n such a way that the three assumptions discussed above are satisfied;

only In such a case is the invocation considered legal. The most important is assumption I. since It

implies that even If a ?type name appears more than once in the procedure heading, it is still

necessary to associate just one value with It. In fact, we require that a heading contain exactly one

defining instance of a ?type name. Any other use of the ?type name must obey the constraints

stated In the definition. An example is;

procedure H (a: array[?R > T{fl.f2) Hill}, b: array[?S > T{fl.f2)]{all}. t: ?S) returns ?R

An invocation of a procedure having ?types for some of its formal parameter types is checked

for legality as follows. Each hype is matched with the type of the actual parameter to be passed In

the position where the ?type definition appears. This match can be done only if the type of the

actual satisfies the constraints on the Ptyp' thus ensuring that assumption 2 holds. Next, the

declarations for the formals. and for the return value, retval. are rewritten, replacing the ?types

with the matched type values. Finally, the actuals are bound to the formals; if the bindings ire

legal (according to the rewritten declarations), and the use of the return value is lega«. the

invocation is legal.

For example, suppose the following declarations appear In the Invoker of H:

26

X: array[T{fl,f2,f3)]|all}
y:array[T(fl,f2)]{all)
u. T{fl.f2,n)
v. T{fl.f2j

The invocation u *=H(x, y, u) causes ?R to be associated with T(fl,f2,f3), and ?S to be associated

with T{fl,f2) Then the formal declarations are rewritten:

a airay[T{fl,f2,f3|](all}
b: array[Tlfl,f21]{all)
t: T{fl.f2]
retval: T{n,f2,f3)

and the invocation is legal since all the bmuings of actual to formais, and of retval to u. are legal

(as will be shcvn below).

Note in the above invocation that the three assumptions are satisfied, and that ?R and ?S are

associated with different type values. For this invocation of H.

?R > ?S

However the legal invocation v*= H(y, x, u) would cause

?S >?R

and, therefore, assumption 3 is necessary

Within a procedure body, ?types may be used to declare new variables in the usual way. For

example, inside H,

c: array[?S]
v:?R

are legal declarations.

Now we are prepared to extend our rule of binding to cover the additional cases introduced by

data structures and Ptypes. We consider the binding

v*- e

where Tv and Te are the types of v and e. respectively; we wish this binding to be legal, as In

Section 2. If we are certain that Te v. In the case of data structures, this is achieved by

applying the rule of Section 2 directly. Te and Tv must be identical up to the rights on the

-27-

structure as a whole. For example, y*- x Is legal i(

x: array[T(fl,f2}](all}
y: array[T{fl.f2)]{fetch}

or if

x; array(?S]{all)
y: array[?S]{tctch)

For bindings In which Te and Tv are unstructured but involve ?types, we make use of our

Intuitive understanding that a ?type can stand for any member of a set of types Thus a binding

Involving ?types Is legal only If It is legal no matter which member of the set is substituted for the

?type. For example, if

y: ?R > T{fl.f2}

then x ♦» y 1$ legal If

x: ?R

or If T{fl.f2} > the type of x (e.g.. x; T{fI}). On the other hand, y •- x 's legal only If

x: ?R

or

X: T{«ll}

Disoussion
The correctness of the extended binding rule rests on the correctness of the binding rule

shown In Section 2. The ?type notation permits a name to stand for a set of types; the compiler can

construct this set of types from the ?type definition. Whenever a ?type takes part In a binding, the

compiler applies the rule of section 2 In the most stringent possible way. by requiring that the rule

work for all types In the set.

The usefulness of the extended rule is demonstrated In Figure 6, which shows the

Implementation of a procedure, agesort. to sort an array of employee-records by employee age. using

only birth-date access to employee-records. The procedure uses an array operation, siie. to

determine the current slie of the array. A legal Invocation of this procedure wouJd be. for

-28

example, agesort(b), where

b: array[employee-recordjall}](all)

A sorting example was chosen because sharing of the object being sorted is necessary, and

because it must be possible to read an element from the object being sorted, and later to write that

element back into the object Observe how the use of ?R enables this activity (the interchange of

the ith and jth elements of the array).

procedure agesort (a array[?R > employee-recordjbirth-date}](fetch,update. siie}) -

comment agesort sorts an array[employee-record] by employee age, using a bubble soft;

index; Integerfall«« size(a);

repeat
bound. integer{alll <= index;
index *» I;
for j: intrgerjall) *» 1 step 1 to bound-! do

if birth-date(fetch(a, j)) > birth-date(fetch(a, J»l))
then begin

temp: PR«" fetch(a, j+1);
update(a> j*!, fetchU, J));
updateCa, J, temp);

index «- J,
end

until index - I;

return;

end agesort

Figure 6. The agesort procedure.

29-

4. COMPARISON WITH A DYNAMIC MECHANISM

We began the work reported here having observed thrt Algol-like scope rules were insufficient

for controlling the use of shared data. We had also observed that the access control protection

mechanisms available in operating systems did provide useful control over sharing of d* ra. Could

an analogous facility be of use In languages? The answer is affirmative - even more so t':an we

expected in that access control restrictions may be enforced at compile time The next question <$;

how does enforcing access control using compile time checking Impact the power of the language

facility? To address this question, it seems appropriate to ask where and why language access

control and operating system access control facilities are similar and different

The language mechanism we describe is based on an access control facility defined in termi of

capabilities In a capability-based operating system all data is recorded in objects. Each object has

a type that determines the accesses applicable to that object A process can reference an object only

by exercising a capability for It. Each capability specifies a unique object in the system and the

accesses permitted on that object. We found that in an object-oriented language it was useful to

think of a variable as a capability. Both are essentially "access paths" to objects, useful for

exercis.ng just those rights named in the capability or the variable.

To go into greater detail we compare our language facility to the specific capability-based

protection mechanism found In the Hydra operating system [Jones75. VVulf74];

I) Both facilities are object-oriented. Users can create arbitrary numbers of abstract object types

and specify the accesses appropriate to objects of the type. Operations on objects are implemented

as procedures. Most though nof all extant systems other than Hydra limit access control to a small

number of types of objects, mainly segments or memory blocks. In Hydra new types can be created

dynamically; In the language types are user defined and are known at compile time.

We have already noted that both the language and the operating system facilities control

access to an object on the basis of the access path (through the variable or capability). In the

language facility, variables are all known at compile-time and their use is controlled by the scope

■30

rules. Though the object bound to a variable may change, the type of the object and the rights

permitted by access through the variable are fixed and known In contrast, in the system the

capability associated with a name may change dynamically, permitting arbitrary types of objects to

be accessed. No restrictions on the capabilities associated with a name are enforced by the system

access control facility

2) Only operations applicable to an object (based on its type) can be performed on the object. In

the language facility, such operations are implemented as procedures defined in the type-module

Experience with Hydra has shown that its access control mechanism encourages programmers to

construct "subsystems" which are analogous to type-modules in a number of ways: Each subsystem

defines a new abstract type (occasionally seveial new types) along with the accesses applicable to

objects of that type and the procedures that implement the operations of the type.

3) To embed our access control facility in a language requires determining a policy for controlling

the scope of type modules This policy specifies in which program segments variables of the type

can be declared. If variables of the type can be declared, the policy specifies which operations

defined by the type module can be invoked Whether invocation of such an operation fails due to

insufficient rights for actual parameters objects is a different question.

In Hydra, access to a type's operations is controlled using the access control mechanism. A

procedure itself is an object and one access defined for procedures is "call" access Thus a user

must obtain "call" rights to a procedure in order to invoke it at all. Similarly types are also objects

In Hydra. To create a new instance of the type a user exercises the "create" right to that type. So

In Hydra use of types and operation defining procedures are controlled by careful disbursement of

"create" rights to type objects and "call" rights to procedures.

So far we have not discussed the kind of programming language in which our type-modules

and procedures would be embedded but we need to do so to consider the policy fur type module

usage. One possibility would be a language like Pascal or Algol 60 In which the corrpiier compiles

an entire program text. Including the texts of all type-modules and procedures, at one lime. Here.

-31

scope rules determine the blocks in wh.ch a type module is known Another, more promi.lng.

poss.b.l.ty is a modular language in wh.ch type module, are separately compiled to be stored in a

data base. At comp.le or load time external modules are found in the data base together with their

specif.cat.ons; the compiler can use the specifications to determine the types of the formal

parameters so that access control consistency can be checked at compile or load time. Accessibility

of a particular type module would be determined by the policy implemented by the language

support system which maintains the data base of compiled modules For this presentat.on we have

tacitly assumed the policy that all or nothing of a type module was available for use

•

4) Both the language and the operating system access control facilities employ amplification. Here

there U a substantial difference between the two facilities. In the language facility, amplif.catior

of rights to an object occurs (automatically) only at entry to a procedure defined in the obit's

type-module. This restriction is motivated by the desire to localize the code that determines the

behavior of objects of a type to the type-module.

Amplification in Hydra is not restricted to operation invocation; it can also be performed

explicitly by a user (having the appropriate "amplify" right) However, subsystem builders

voluntarily adopt the same sensible strategy discussed for the language facility: when a subsystem

creator creates an abstract type, he is given the right to "amplify", that is to increase, the rights for

any object of the type. Note that he i, permitted to amplify access to any object of the the type,

whether it ex.sts yet or not Because this is a very powerful ability, it is closely held. In general,

only procedures implementing operations applicable to the type are endowed by the type

(subsystem) creator with the ability to perform such amplification.

Another contrast between our language notion of amplification and that of Hydra is on« of

degree. In the language, amplification always yields full rights to the parameter object and to Its

representation. In Hydra, amplification can be tailored to the different requirement, of the

subsystem procedures. Each procedure can be defined to gain (via amplification) only those

additional right» required within that subsystem procedure. Though the finer control Introduced

32

by tailoring may be conducive to enhanced correctness and protection, we believe that it would

introduce excessive complexity of expression We felt that brevity of expression took precedence

for the language faciiu/.

5) The Hydra and language access control facilities diverge most strikingly in their treatment of

structured objects. Using the language facility, once a structured object is created the types of its

component objects are fixed. The semantics of the extended binding rule ensures that no violation

of these types is possible However, restricted access to component objects of a data structure can

be accomplished through the use of Ptypes In Hydra, objects contain data and capabilities Object

A is considered a component of object B if B contains a capability for A. Hydra's access control

facility does not enforce restrictions on the type or number of objects that can be components of

other objects In fact, the system access control facility provides a variety of operations that can be

explicitly invoked to alter objects. Capabilities can be transported from one object to another,

replicated and destroyed. (Destruction of the last remaining capability for an object implies

destruction of that object.) Of course, invocation of such operations is controlled via capabilities

Hydra provides more dynamic power than the language facility and its access control mechanism

alone is not sufficient to accomplish the automatic restricted access to component objects provided

by the language facility using Ptypes. However, as usual, the aciJitional restrictions can be

Implemented as user programs to provide the control dynamically.

6) As noted above, Hydra objects contain both data and capabilities, and the access control

operations can be explicitly invoked by the user to move capabilities out of one object into another.

Thus Hydra is a suitable facility for long term storage and retention of capabilities. To Illustrate

we consider a file system. In most cases a file is defined as a sequence of pages or blocks holding

data. In Hydra, a file could be a sequence of objects of arbitrary type, represented as a sequence of

capabilities. Such a file system is used very much the way we use bank safety deposit boxes, as

receptacles for entities whose existence we wish to assure and whose access we wish to control. The

bank that provides safety deposit boxes has no need to know what Is kept in safety deposit boxes,

and does not enforce any control over the type of entities kept in them.

?.3

To ensure the continued existence of any object a user wishes to retain between executions of

a program or between terminal sessions, the user places a capability for it in the Hydra file system

Later when a user retrieves sometHng from the file system he does not have a string of bits he can

manipulate arbitrarily; he has a structured object on which he can only perform accesses applicable

to the object's type. Note that this Is in contrast to (he language's stricter access control rules which

restrict a program to accessing only components of an object if the types and accesses are known at

compile time. In order to build a file system in our language, we require dynamic checking of the

qualified type of an object retrieved from a file system Such a dynamic check ensures that a

retrieved object is of the type expected by the compiler. Such dynamic checks seem very

straightforward and could be generated by the compiler where appropriate, using a union

discrimination mechanism such as the conformity relations in Algol 68 [Lindsey73] or the "typecase"

construct in CLU [Schafferf75].

In the above discussion we have shown that the language facility we propose and

capability-based operating systems are quite similar in structure Though the system which

enforces access control dynamically seems more powerful than the language (using compile time

checks), we found that many features are used in similar ways. Initially we expected that we could

not do all protection checking at compile-time in the language and that we would have lo embed

some sort of escape mechanism to permit run-time checking. The requirement for such an escape is

analogous to the need for type unions in a strongly typed language. We assume type unions to be

available in the language to program applications like the file system discussed above. Whether

anything further is required is an open question. We now suspect that type unions are a sufficient

addition.

A system like Hydra and the language provide complementary facilities. The system run time

checking could be used where dynamic checks are unavoidable. It would be possible to rely on the

compiler to perform static checks, thus avoiding storage of unnecessary type information, and

execution of unnecessary Instructions, or the system could be used as a backup to the compllei with

dynamic checking ensuring the correctness and reliability of the compiler and to some extent the

34 -

hardware. In addition the system would provide support for the storage of already compiled type

modules and perhaps other user created objects Finally, we believe the user will find it a pleasure

to program and to execute In the consistent homogeneous environment which results when

language and operating system are structurally similar

35

5. DISCUSSION

A major prem.se of this paper is that it i, .mportant for programmers to express restr.ctions

on the manipulatnn of abstract objects and to express these restnct.ons precisely. In abstract terms

meaningful to the ob-.cts. We have proposed an access control facility su.table for extending

object-oriented languages to achieve this goal Access control i, prov.ded us.ng var.ables. objects,

type-modules and bind.ng At any point in the execut.on of a program the var.ables that can

legally be named provide access pat»., to the objects that can be man.pulated. Different programs

(possibly written by different users) may share the same object, each has a different variable

bound to the shared object Thus, control of the manipulation of an object Is based on the

variable (the access path) used to identify the object.

The access control facility definition Includes a binding rule wh.ch determines how variables

can be bound to object, and. thus, how access to a new object can be obtained. Th.s binding rule

Is based on several prem.ses:

I. Object sharing is des.rable

Iccl^TTV! aCCe" Pa,hS t0 an 0bjeCt Sh0uld not Permit a u$er * ga*n additional access to that object, i.e., programs should be "access-correct".

3.^ Only operations applicable to an object (as determined by its type) should be performed

4. Access control should be checkable at compile time.

Control of access to both unstructured and structured objects Is provided; for structured object,.

access to the components can also be restricted.

We believe that a mechanism such as ours is a worthwhile addition to a language used for

writing applications programs to run on modern operating systems; the systems themselves would

also benefit from being programmed in such a language. Modern systems enable different user,

(often mutually suspicious users) to share data In a controlled way. Our mechanism perm«, the

real-world activity of controlled sharing to be expressed in the program, which are doing the

sharing. In addition, the static checking we provide not only eliminates run time access errors, but

36

raises the possibility that controlled sharing can be accomplished with lower cost than is currently

possible. For the present, it is safer to retain d)namic checking, to back up the compiler (which Is a

complex and probabiy unverified program), to execute the programs which were not processed by

the cc piler, and, if appropriate, to enhance reliability with (possibly duplicate) runtime access

control checks.

Of course, a static mechanism like ours can be considered as a replacement for a dynamic

mechanism only if no useful programming power is lost in the process We have considered this

question in Section 4, where we compared our mechanism with the dynamic access control

mechanism present in the Hydra system to determine whether the extra flexibility in the system

mechanism permitted useful programs to be written that could not be written in the language. Our

analysis Indicates that sensible use of the system mechanism leads to program structures very

similar to those in the language. In fact, our mechanism appears to be superior to the dynamic one,

not only because static detection of access control errors is preferable to dynamic detection, but

because certain types of restricted access control (restricted access to elements of a shared data

structure) can be provided in the system only at the cost of the additional programming complexity.

However, we recognize that there are cases where an escape to dynamic checking is necessary.

More study Is required to establish where such escapes are needed and how they should be

provided in a programming language. An escape is needed to build the file system; here we

assume the existence of run-time access control checks that are analogous to those needed In the

presence of type unions.

The objective of an access control facility is to be able to restrict the access to objects according

to some policy. One should then ask If an access control facility allows one to write access

restrictions so as to Implement policies of Interest. This is a difficult question In language access

control jusi as In systems. One accepted policy or guideline Is the "need to know" it should be

possible to Implement programs so that an object is accessible in only the ways appropriate and

necessary to the function currently b.-mg performed. Our facility permits tailored accessing

environments to be designed and Implemented. In fact, "need to know" Is the policy which

M!M|li|[H|f(W

-37-

"nd«„« our ace«, comrol ^^ ^ ^

::;::::::;:::roft' ------:i:: for dynamic access control mechanisms as well.

"..—;::::.:::,::,:■ ■■ - ■ - ~- - - "ujcus are snared amoi g users Hnwpu.r u.- i. i
worthwhile ev.n wh.n ,eVe OUr mecha"*^ Is

' eVen when Programs are not intended to run in surh a„

^.. ^:::n:::: rrrr - ■• -

Nify™ y^Jyopi -^immr^v-

38

ACKNOWLEDGEMENTS

We would like to express our appreciation to our colleagues, particularly those working on
CLU and Alphard whose criticism and observations have helped us prep^e this paper.

REFERENCES

[Dahl72] Dahl. OJ. and CAR. Hoare, Hierarchical Program Structures, Structured

Programming, (ed Dahl, Dijkstra, and Hoare) Academic Press, 1972

tDennls66] Dennis, J. and EC. van Horn, Programming for Multiprogrammed Computations.

CACM 9. 3, 143-155 (1966)

[Jones73] Jones, A.. Protection in Programmed Systems PhD thesis, Carr.egie-Mellon University.

1973

[Jone$75] Jones, A. and W A. Wulf, Toward the Design of a Secure System. Software Practice

and Experience. V5. 321-336 (1975)

[Lampson71] Lampson. B.W., Protection Proc. Fifth Annual Princeton Conference on
Information Sciences and Systems, Princeton University, 437-443 (1971)

[Llndsey73] Lindsey, CH. and SG van der Meulen Informal Introduction to Algol 68 North

Hol'.and, Amsterdam-London, 1973

[Liskov76] Liskov, B, An Introduction to CLU. Computation Structures Memo No. 133.
Laboratory for Computer Science, Mass. Institute of Technology, Cambridge, Mass.. 1976

[McCarthy62] McCarthy. J. et al., LISP 1.5 Programmer's Manual MIT Press. 1962

[Schaffert75] Schaffen. C. A Snyder and R. Atkinson. C i Reference Manual Compu'^on
Structures Group, Laboratory for Computer Science, Mass Institute of Technology.

Cambridge. Mass. 1976

[Sturgis74] Sturgis. HE.. A postmortem for a time sharing system. Ph.d Thesis. University of

California at Berkeley. 1974

[Wirth7|] Wirth, N . The Programming Language PASCAL. Acta Informatica. I. 336-63 (1971)

[Wulf74] Wulf. W. A. E. Cohen. W Corwin. A. Jones, R. Levin. C. Pierson and R. Pollack.
HYDRA: The kernel of a multiprocessor operating system. CACM 17. 6. 037-345 (1974).

[Wulf76] Wulf. W. A.. R. London and M. Shaw. Abstraction and Verification in Alphard. to be

published.

U

UNCLASS1FTO
 •

SECURITY CLASSIF'CATION OF THIS PAOE ^"»"-n Pa^ Enltttd)

/'

i. -»EP/SRT NUMäta-—

MM -JTR- 76* 088 6

j f //N ACCESS CONTROL JACILITY FOR PROGRAMMING

10, REPORT DOCUMENTATION PAGE
i a —[— i

2, GOVT ■,.CESSION NO.

4. TITLE Cund Sub(/(/e;

LANGUAGES
2

7. AUTHORf»;

Anita K./Jones A.
Carnegie-Mellon UnTv

Barbara H./Liskov
Mass. Institute of Techno

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Carnegie-Mellon University
Computer Science Dept.
Pittsburgh, PA 15213

II. CONTROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Proiects Agency

1400 Wilson Blvd
Arlington, VA 22209

14. MONITORING AGENCY NAME a ADDRESSr" dlltarenl irom Controlllnä Ollice)

Air Force Office of Scientific Research (NM)

Boiling AFB, Du 20332

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT 4 PERIOD COVERED

Interim ..'.^r ;
6. PERFORMING ORCJ. REPORT'NUMBER

8. CONTRACT Ort GRANT NUMBERfs;

/
/ F4462^-73-C-dd74;<f- '

10. PROGRAM ELEMENT, P RO J ECT./r ASK
AREA & WORK UN. " NiJMBERS '

//) Mav »76 /

enoirT^/ Kf
Ao 2466 , , iyt£\

i - ■ n-i» . »i ■■»—■■■

H^NUMB ER OF PAGES' "•(//J

.CURITY CLASS, (ol this repoety 15. SEC

UNCLASSIFIED

ISa. DECLASSIFI CATION 'DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT To/'hi» Report;

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol the abalracl entered in Block 20, if dlUerenl Irom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessary and idenllly by block number)

20. ABSTRACT (Continue on reverse

tion is needed and des
exist In operating sys
ming languages current
to enhance software re
sharing of information
could be incorporated
suitable for incorpora
tion of abstract data
time checking of acces

side II necessary and identily by block number) Qontvolleci sharing of informa

irable for many applications. Access control mechanisms
terns to provide such controlled sharing, however, program-
ly do not support such a facility. This paper argues that
liability programming languages should support controlled

the paper illustrates how such an access control facilit\
in a programming language. The mechanism described is
tion in object-oriented languages which permit the defim-
types; it is defineu in such a way as to enable compile
s control.__

DD FORM
JAN 73

1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED ^ - £) f/^rf ''
SECURITY CLASSIFICATION OT THIS PAGE (When Data Entered^

